ANÁLISIS DE EFICIENCIA DE LOS DEPARTAMENTOS DE LA EMPRESA TRANSPORTES ORO S.A.S MEDIANTE EL DATA ENVELOPMENT ANALYSIS

Investigadora Principal
MSc. MARCELA MARÍA MORALES CHÁVEZ

UNIVERSIDAD LIBRE SECCIONAL PEREIRA
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA COMERCIAL
SEMILLERO EN INVESTIGACIÓN DE OPERACIONES Y ESTADÍSTICA
PEREIRA
2014
ANÁLISIS DE EFICIENCIA DE LOS DEPARTAMENTOS DE LA EMPRESA TRANSPORTES ORO S.A.S. MEDIANTE EL DATA ENVELOPMENT ANALYSIS

Investigadora Principal
MSc. MARCELA MARÍA MORALES CHÁVEZ

Investigadores Auxiliares
YULIAN ISIDRO ARANGO ARANGO
CAROLINA GARCÍA AGUIRRE

UNIVERSIDAD LIBRE SECCIONAL PEREIRA
FACULTAD DE INGENIERÍA
PROGRAMA DE INGENIERÍA COMERCIAL
SEMILLERO EN INVESTIGACIÓN DE OPERACIONES Y ESTADÍSTICA
PEREIRA
2014
CONTENIDO

INTRODUCCIÓN

1. DESCRIPCIÓN DEL PROBLEMA

2. JUSTIFICACIÓN

3. OBJETIVOS
 3.1. OBJETIVO GENERAL
 3.2. OBJETIVOS ESPECÍFICOS

4. MARCO REFERENCIAL
 4.1. MARCO TEÓRICO
 4.2. MARCO CONCEPTUAL
 4.3. ESTADO ACTUAL

5. DESARROLLO METODOLÓGICO
 5.1. VARIABLES Y PARÁMETROS DE ESTUDIO
 5.2. MODELO DATA ENVELOPMENT ANALYSIS
 5.2.1. Modelo CCR-O
 5.2.2. Modelo Windows Analysis
 5.2.3. Modelo BCC-O
 5.3. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL
 5.3.1. Análisis Modelo CCR-O
 5.3.2. Análisis Modelo Windows Analysis
5.3.3. Análisis Modelo BCC...56
5.4. POLÍTICAS DE MEJORAMIENTO ..57

6. CONCLUSIONES ..60

7. BIBLIOGRAFÍA ...62

ANEXOS ..67
LISTA DE TABLAS

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Pág.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>Subíndices modelo CCR-O</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>Parámetros modelo CCR-O</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>Variables de decisión modelo CCR-O</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>Subíndices modelo BCC-O</td>
<td>34</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>Parámetros modelo BCC-O</td>
<td>35</td>
</tr>
<tr>
<td>Tabla 6</td>
<td>Variables de decisión modelo BCC-O</td>
<td>35</td>
</tr>
<tr>
<td>Tabla 7</td>
<td>Desarrollo de window 1</td>
<td>38</td>
</tr>
<tr>
<td>Tabla 8</td>
<td>Ejemplificación ventana 2</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 9</td>
<td>Departamento de Recursos Humanos en W1</td>
<td>39</td>
</tr>
<tr>
<td>Tabla 10</td>
<td>Departamento de Recursos Humanos en W2</td>
<td>40</td>
</tr>
<tr>
<td>Tabla 11</td>
<td>Correlaciones Departamento Operaciones</td>
<td>42</td>
</tr>
<tr>
<td>Tabla 12</td>
<td>Correlaciones Departamento Recursos Humanos</td>
<td>44</td>
</tr>
<tr>
<td>Tabla 13</td>
<td>Correlaciones variables Departamento Comercial</td>
<td>46</td>
</tr>
<tr>
<td>Tabla 14</td>
<td>Correlaciones Departamento Financiero</td>
<td>47</td>
</tr>
<tr>
<td>Tabla 15</td>
<td>Window 1</td>
<td>48</td>
</tr>
<tr>
<td>Tabla 16</td>
<td>Análisis semestral</td>
<td>51</td>
</tr>
<tr>
<td>Tabla 17</td>
<td>Niveles de eficiencia último cuatro meses</td>
<td>52</td>
</tr>
<tr>
<td>Tabla 18</td>
<td>Resumen departamento por períodos analizados</td>
<td>54</td>
</tr>
<tr>
<td>Tabla 19</td>
<td>Correlaciones BCC</td>
<td>57</td>
</tr>
</tbody>
</table>
LISTA DE GRÁFICAS

Gráfica 1. Variables y parámetros por departamentos
Gráfica 2. Variables y parámetros análisis entre departamentos
Gráfica 3. Niveles de eficiencia departamento de operaciones
Gráfica 4. Niveles de eficiencia Dpto. Recursos Humanos
Gráfica 5. Niveles de eficiencia Departamento Comercial
Gráfica 6. Niveles de eficiencia departamento financiero
Gráfica 7. Promedio de niveles de eficiencia por meses W10
Gráfica 8. Promedio niveles de eficiencia primer semestre 2013
Gráfica 9. Promedio niveles de eficiencia en los últimos 4 meses
LISTA DE ANEXOS

Anexo 1. Base de datos 67
Anexo 2. Niveles de eficiencia por cada departamento CCR-O 69
Anexo 3. Proyecciones por departamentos 70
RESUMEN

En la presente investigación se desarrolla un análisis de eficiencia a los cuatro departamentos que conforman la empresa Transportes Oro S.A.S. Para su cumplimiento se desarrollan los modelos matemáticos del *Data Envelopment Analysis*, CCR para cada uno de ellos con las salidas que generan desde sus respectivos procesos; BCC y *Windows Analysis*, permitirán el análisis entre ellos, con variables iguales para todos los departamentos. Es así como se presenta un análisis de cómo han sido los niveles de eficiencia de cada una de las unidades de observación, la influencia que presentan sobre éste cálculo las variables seleccionadas, y las políticas de mejoramiento para cada uno de ellos.

Palabras clave: Análisis Envolvente de Datos, BCC, CCR, eficiencia, Transportes Oro S.A.S, Windows Analysis.

ABSTRACT

In the present investigation an analysis of efficiency develops to four departments that shape the company Transportes Oro S.A.S. For his fulfillment there develop the mathematical models of the Data Envelopment Analysis, CCR for each of them with the exits that they generate from his respective processes; BCC and Windows Analysis, they will allow the analysis between them, with equal variables for all the departments. Es as well as one presents an analysis of how they have been the levels of efficiency of each one of the units of observation, the influence that the selected variables present on this one calculation, and the policies of improvement for each of them.

Keywords: *Data Envelopment Analysis, BCC, CCR, Efficiency, Transportes Oro S.A.S, Windows Analysis.*
INTRODUCCIÓN

En Colombia el transporte de carga es una actividad fundamental en el aparato productivo del país1. Por ello es importante la constante actualización y evaluación de los recursos que se necesita para realizar esta función, donde uno de los principales factores a revisar son las actividades internas realizadas en cada uno de los departamentos de las empresas dedicadas al transporte de carga en el país, con el fin de llegar a una eficiencia general de la empresa. Por esta razón se selecciona la empresa Transportes Oro S.A.S. para analizar el nivel de eficiencia presentado en los departamentos que la conforman, mediante la técnica matemática DEA (\textit{Data Envelopment Analysis}), en el período comprendido de enero a octubre del 2013, el análisis se realizará desde dos perspectivas, la primera por departamento, analizando cada uno de ellos de acuerdo a los resultados que generan desde cada proceso, y la segunda un análisis entre ellos, estableciendo variables medibles para todos.

En el desarrollo metodológico del proyecto como primer punto, se hace una selección de las variables y parámetros, explicado en el numeral 5.1; después de ser establecidas, se seleccionó los modelos \textit{Windows Analysis}, CCR y BCC (desarrollados en el numeral 5.2.), y mediante los resultados arrojados por ellos se realiza un diagnóstico de qué tan eficientes han sido los procesos desarrollados por los departamentos de la empresa.

Este análisis es expuesto en el numeral 5.3., yendo más allá de él se establecen las políticas de mejora necesarias para llevar a aquellos departamentos que figuren como ineficientes a la frontera de eficiencia, estas son expuestas en el numeral 5.4, con estas estrategias se apunta al desarrollo de la competitividad de la compañía.
1. DESCRIPCIÓN DEL PROBLEMA

Una medición importante a nivel internacional en materia logística es el Índice de Desempeño Logístico (IDL), en el cual Colombia ocupó en 2012 el puesto 64 entre 155 países, y el último puesto entre los once países de referencia, siendo ellos, Perú, México, Brasil, Chile, Malasia, Portugal, Turquía, Suráfrica, Corea, España. El bajo desempeño en este indicador no sólo es el reflejo de falencias en infraestructura, sino también de la falta de un sector de transporte de carga eficiente y de la debilidad en el diseño de cadenas logísticas que permitan contratar envíos a precios competitivos.

En Colombia el transporte de carga es una actividad fundamental en el aparato productivo del país. Por lo cual, las empresas prestadoras de este servicio deben ser eficientes en todos sus procesos dentro de las áreas que lo conforman, desde la solicitud del servicio del cliente hasta el cumplimiento de la promesa de valor. La eficiencia que presentan cada uno de los departamentos, hacen parte de un todo que es la compañía, rendimiento que influye en la generación y desarrollo de los servicios prestados. Por esta razón es importante generar estrategias de mejoramiento al interior de la empresa, con el fin de que se vean reflejadas en la prestación del servicio, impactando positivamente la rentabilidad y funcionamiento de las mismas, mejoras que se verán reflejadas en la competitividad logística del país.

Dentro del Eje Cafetero, una de las zonas de mayor flujo de transporte de carga, por su ubicación geoestratégica, se encuentra la empresa Transportes Oro S.A.S, que opera en el país desde 1992. En la actualidad, Transportes Oro se encuentra conformado por cuatro departamentos en toda su unidad de negocio conformados por, el departamento de recursos humanos, financiero, comercial y operativo, cada uno de ellos influyen en la integridad del proceso y finalidad de la empresa, por esta razón es indispensable que los recursos estén siendo administrados de la mejor manera posible, obteniendo seguimiento de las actividades y procesos con el fin de optimizarlos. En este sentido se empieza a valorar la utilización de sistemas de eficiencia capaces de indicar las carencias y excesos de recursos.

Por esta razón se implementa un estudio del comportamiento de los departamentos de Transportes Oro S.A.S, donde se analiza la eficiencia mediante la herramienta matemática Data Envelopment Analysis, con el fin de presentar mejoras y recomendaciones dentro de cada departamento, lo que conllevará a una buena administración de sus recursos.
2. JUSTIFICACIÓN

La profundización de la apertura comercial con la suscripción y entrada en vigencia de diferentes tratados de libre comercio en Colombia, convierte la logística en un factor fundamental para competitividad del país. Esta variable comprende el conjunto de métodos y medios que permiten optimizar los tiempos y costos de transporte, almacenamiento y distribución, desde la fase de suministro, hasta el consumidor final. Siendo una necesidad que el transporte de carga, uno de sus componentes sea eficiente.

Para que el transporte terrestre de carga logre eficiencia en sus procesos, quienes prestan este servicio deben serlo, siendo importante evaluar las actividades realizadas internamente, es decir, el comportamiento de los departamentos de las empresas permiten el buen desarrollo de la actividad económica. De esta manera, los departamentos no deben verse como una función aislada, sino como un proceso global de generación de valor para el cliente, siendo una acción integrada de tareas que permiten una mayor velocidad de respuesta al mercado, con costos mínimos. Es claro que la falta de integración entre los diferentes departamentos de una empresa, provoca ineficiencias que se traducen en mayores costos, cuando cada departamento trata de mejorar el empleo de sus propios recursos y resultados, suele producirse una optimización de los mismos.

Teniendo en cuenta todo esto, se selecciona la empresa Transportes Oro S.A.S, y los cuatro departamentos (comercial, recursos humanos, operativo y financiero) como objeto de estudio, aportando de esta manera a una empresa que desde 1992 presta servicios de Transporte terrestre de carga. Con sede principal en Armenia cubre clientes en el territorio nacional, al ser evaluados sus departamentos y generadas políticas de mejora necesarias para lograr aumentar el nivel de eficiencia de cada uno de ellos, se aporta directamente al desarrollo de la competitividad en la prestación de los servicios de la empresa y éste finalmente influenciar los niveles de eficiencia en la prestación de servicios logísticos.
3. **OBJETIVOS**

3.1. **OBJETIVO GENERAL**

Analizar la eficiencia de los departamentos de la empresa Transportes Oro S.A.S a través del *Data Envelopment Analysis*.

3.2. **OBJETIVOS ESPECÍFICOS**

- Determinar las variables y parámetros del estudio.

- Plantear un modelo DEA, que permita en análisis de la eficiencia de los departamentos de la empresa Transportes Oro S.A.S en el período enero a octubre de 2013.

- Realizar un diagnóstico a partir de los resultados del modelo.

- Diseñar políticas de mejora a partir del diagnóstico realizado.
4. MARCO REFERENCIAL

4.1. MARCO TEÓRICO

La Investigación Operativa (IO), es una moderna disciplina que se caracteriza por la aplicación de teoría, métodos y técnicas especiales, para buscar la solución de problemas de administración, organización y control que se producen en los diversos sistemas que existen en la naturaleza y los creados por el ser humano, tales como las organizaciones que identifica como sistemas organizados, sistemas físicos, económicos, ecológicos, educacionales, de servicio social, entre otras.

La aplicación de la Investigación Operativa busca apoyar la “toma óptima de decisiones” en los sistemas y en la planificación de sus actividades. El enfoque fundamental de la Investigación Operativa es el enfoque de sistemas, por el cual, a diferencia del enfoque tradicional, se estudia el comportamiento de todo un conjunto de partes o sub-sistemas que interaccionan entre sí, se identifica el problema y se analizan sus repercusiones, buscándose soluciones integrales que beneficien al sistema como un todo. Para hallar la solución, la investigación Operativa generalmente representa el problema como un modelo matemático, que es analizado y evaluado previamente.

La Investigación de Operaciones comprende modelos cuantitativos aplicados a la solución de problemas de Administración, tales como logística, optimización de recursos, entre otros. Se pretende un equilibrio entre la capacidad de usar

7 Idem,p.1
modelos para resolver casos y una visión más panorámica de las posibilidades y limitaciones de los métodos de Investigación Operativa.

La investigación de operaciones nos ofrece herramientas necesarias para resolver los problemas de administración de recursos entre las cuales están: programación lineal, teoría de colas, teoría de probabilidad, enometría administrativa, teoría de juegos, programación dinámica, simulación de computadores y *Data Envelopment Analysis* la cual llamaremos de aquí en adelante por sus siglas DEA.

DEA engloba el uso de técnicas de programación matemática para seleccionar de una muestra aquellas unidades productivas que son eficientes, y a partir de ellas construir una envolvente de las observaciones. También se obtiene una medida de eficiencia para cada unidad, comparándola con dicha envolvente. Esto hace posible analizar el caso más general de múltiples factores y productos. Partiendo de los insumos y de los productos, el DEA provee un ordenamiento de las unidades a evaluar, dándoles una puntuación de eficiencia relativa. “Es por ello que la metodología del DEA constituye una herramienta de *benchmarking* que permite establecer objetivos de mejora para aquellas unidades de decisión que resultan ineficientes en un período analizado, sobre la base de los resultados de aquellas unidades que sí alcanzaron la frontera de eficiencia. Entonces, partiendo de diseñar nuevos objetivos para el conjunto de unidades ineficientes, se puede maximizar la eficiencia para la cadena u organización en cuestión”.

Un aspecto importante a tener en cuenta es que el DEA se emplea para la medición de eficiencia de unidades homogéneas. Esta condición está dada para evitar que la ineficiencia de una unidad de toma de decisión (DMU, por sus siglas

8 Idem., p.2.
9 *CEFP*: El impacto de las transferencias condicionados en la eficiencia técnica de las entidades federativas, 2012. P.2
en inglés) se deba a la no uniformidad en la escala de producción o a la no uniformidad en el uso de entradas y salidas que caracterizan a la DMU10.

DEA utiliza varios criterios de eficiencia pero la más importante es la eficiencia de Pareto, también conocido como óptimo de Pareto u optimalidad de Pareto, es un concepto de la economía que tiene aplicaciones en ingeniería y diferentes ciencias sociales. El término recibe su nombre a partir del economista italiano Wilfredo Pareto, quien utilizó este concepto en sus estudios sobre eficiencia económica y distribución de la renta. Una asignación se define como "Pareto-eficiente" cuando no pueden lograrse nuevas mejoras de Pareto.

La eficiencia de Pareto es una forma de definir la eficiencia asignativa (existen otros criterios). Bajo dicho razonamiento, una asignación de recursos es óptima en el sentido de Pareto cuando no es posible que algunos individuos mejoren su posición sin empeorar al mismo tiempo la de otro11.

Para realizar el análisis de las eficiencias mediante DEA se emplean diferentes modelos entre los más conocidos está el CCR (también conocido como CRS o \textit{Constant Return to Scale}) propuesto por A. Charnes, W.W. Cooper y E. Rhodes y el BCC (también conocido como VRS o \textit{Variable Return to Scale}) propuesto por R.D. Banker, A. Charnes y W.W. Cooper. En el modelo CCR cualquier variación en los \textit{inputs} produce una variación proporcional en los \textit{outputs}, considerando retornos constantes de escala. Por el contrario, el modelo BCC no asume proporcionalidad entre \textit{inputs} y \textit{outputs}, lo que permite retornos variables de escala12.

10Idem. p.3.

11MARÍA DELIA IRASTORZA: Criterios de eficiencia, 2011

12INGENIARE. REVISTA CHILENA DE INGENIERÍA: Evaluación de la eficiencia de las compañías aéreas brasileñas a través de un modelo híbrido de análisis envolvente de datos (DEA) y programación lineal multiobjetivo, 2012. pág. 333.
DEA también utiliza otros modelos no radiales como Windows Analysis el cual calcula la eficiencia a través del tiempo de una manera más exacta y confiable. Los modelos DEA se usan siempre en contextos estáticos, es decir, cuando el tiempo no es una variable relevante. Para solucionar este inconveniente se utiliza el índice Malmquist que trata de medir la evolución de las diferentes unidades en dos períodos de tiempo diferentes. Una alternativa es el modelo Windows Analysis, se trata de relacionar los inputs y outputs de diferentes unidades a lo largo de diferentes períodos de tiempo. La amplitud de la “ventana”, es decir, el número de períodos de tiempo que entran en comparación depende del tipo de problemas y de las combinaciones que desee realizar el analista, y por tanto el número de ventanas está por determinar. Se selecciona los períodos que intervienen en cada una de las “ventanas” y aplicamos el modelo DEA oportuno (CCR o SBM) de forma que se obtienen diferentes valores del score de eficiencia para cada uno de los períodos, ya que depende de la comparación de los diferentes períodos del análisis.

DEA es en origen un procedimiento no paramétrico que utiliza la técnica del problema básico de programación lineal que consiste en minimizar una función objetivo lineal de variables lineales continuas, sujetas a (s.a.) restricciones lineales. Se considera que una función es lineal si es una combinación lineal de las variables consideradas.

La programación lineal establece los siguientes pasos que consisten: a) Definir claramente un problema, que previamente se ha determinado que existe, b) Desarrollar un modelo, c) Recolectar los datos de insumo, d) Solucionar el Modelo, e) Validar resultados, Interpretarlos y f) Implementarlos en la ejecución de una decisión.

13 J. E. Boscá; V. Liern; A. Martínez y R. Sala. Universidad de valencia: eficiencia temporal con modelos DEA no radiales. 2011. P.3
La versión estándar del problema de Programación lineal es de minimización, los problemas pueden ser también de maximización. Que las variables tengan un solo subíndice es porque finalmente todo se puede reducir al uso de un único subíndice, pero la mayor parte de los problemas utilizan variables con más de un índice esto se puede notar en su función objetivo y restricciones.14

La Función objetivo del modelo Lineal es la formulación matemática de una meta establecida y por lo tanto su valor final mide la efectividad lograda. Es una función lineal a ser maximizada o minimizada y tiene la siguiente forma general

\[
\text{Optimizar } C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + \ldots + C_nX_n
\]

Donde \(X_j\), simboliza matemáticamente a las variables de decisión. Son los valores numéricos que se determinan con la solución del modelo y representan o están relacionadas con una actividad o acción a tomar. Son los únicos valores desconocidos en el modelo y pueden existir en cualquier cantidad, desde 1 hasta \(n\) variables. Es decir, \(j\) varía desde 1 hasta \(n\).15\(C_j\), matemáticamente, simboliza el coeficiente de la variable \(j\) en la Función Objetivo. Son datos relevantes, insumos incontrolables ya conocidos. En la Función Objetivo representan la cantidad con la cual contribuye cada unidad de la variable \(j\), al valor total deseado en el objetivo16.

Las restricciones, desde el punto de vista matemático, son funciones lineales expresadas como igualdades o desigualdades, que limitan el valor de las variables de decisión a valores permisibles. Representan recursos, condiciones o requerimientos establecidos. Las restricciones del Modelo Lineal general tienen la siguiente forma:

15\textit{INVESTIGACIÓN DE OPERACIONES}. Material didáctico, 2011. p. 8
16Idem. P.9
Donde a_{ij}, matemáticamente simboliza el coeficiente, en la restricción i, de las variable j. El subíndice i indica el recurso, requerimiento o condición cuya limitación se está expresando; j indica la variable correspondiente. Cuando la limitación es de un recurso i, estos coeficientes representan la cantidad del recurso total limitado i, que es utilizada en cada unidad de la variable j. Cuando la limitación es de un requerimiento o condición i, representan la cantidad del requerimiento o condición i limitada, que aporta cada unidad de la variable j, al requerimiento o condición total establecida. Son, por ello, valores unitarios, al igual que los coeficientes de las variables en la Función Objetivo. Y b_i, matemáticamente constituye el lado derecho de la restricción i. Representa la cantidad total disponible del recurso limitado i, o la cantidad total de un requerimiento o condición i establecida. Puede existir cualquier cantidad de restricciones por lo tanto i puede variar desde 1 hasta m.

$X_j \geq 0$ es una restricción de no negatividad de las j variables, la cual se le considera siempre presente como una condición natural en el modelo lineal general.

4.2. **MARCO CONCEPTUAL**

En la presente investigación se realiza un análisis de eficiencia a los departamentos de la empresa Transportes Oro S.A.S, de esta manera,
“departamento” tendrá relación directa con las funciones básicas que realiza la empresa a fin de lograr sus objetivos\(^\text{18}\). Dichas áreas comprenden actividades, funciones y labores que buscan mejores resultados para obtener la eficiencia como resultado de la utilización correcta de los recursos (medios de producción) disponibles. Esta se define mediante la ecuación \(E=P/R\), donde \(P\) son los productos resultantes y \(R\) los recursos utilizados\(^\text{19}\), en el cálculo de la eficiencia técnica se refleja si los recursos son explotados al máximo de su capacidad productiva.

Para el \textit{Data Envelopment Analysis} la eficiencia técnica pueden ser de dos tipos dependiendo si las variables de entrada o de salida son de mayor control por la empresa, generándose dos conceptos diferentes. \textbf{Eficiencia Técnica de las Entradas}, cuando para obtener la misma cantidad de \textit{output} consume menos de alguno de los \textit{inputs} (al menos de uno) y no más de los restantes y para \textbf{Eficiencia Técnica de las Salidas}, se entiende el obtener una mayor cantidad de \textit{output} sin consumir mayor cantidad de ninguno de los \textit{inputs} o factores productivos\(^\text{20}\).

Para el desarrollo de un modelo DEA, se requiere de la determinación de tres factores principales DMU, \emph{Inputs} y \emph{Outputs}. Una unidad de decisión o \textbf{DMU} por siglas en inglés como se llamará de aquí en adelante, es a la cual DEA calcula su eficiencia dentro de un sistema de criterios establecidos por la herramienta de investigación de operaciones estas pueden ser de cualquier índole por ejemplo una DMU puede ser, países, ciudades, programas de estudio, bancos, personas,

\(^{18}\text{ACEVEDO, J. Áreas de actividad y funciones básicas de la empresa \{en línea\}. Publicado: 29 de abril 2010.Consultado: 09 de enero de 2014.Disponible en:elcontadorvirtual.blogspot.com/.../áreas-de-actividad-y-funciones-básicas.}\)

DMU´s de tiempo, entre otras. También se pueden analizar varias DMUs pero estas deben ser homogéneas en el sentido que usan el mismo tipo de recursos para obtener el mismo tipo de resultados, aunque en cantidades variables, su caracterización como una tomadora de decisión implica que tiene el control sobre el proceso que emplea para convertir sus recursos a resultados. Por eso para cada DMU existen una combinación de factores que le permite alcanzar el nivel óptimo en la utilización de insumos y generación de productos. Para medir la eficiencia de un DMU es necesaria su comparación con otros similares21. Cuando hablamos de insumos, éstos son definidos como \textit{variables de entradas} o \textit{inputs}, en el sistema DEA, son aquellas las que se utilizan como recurso para generar un resultado de un proceso y estas deben capturar todos los recursos que impacten en las \textit{variables de salidas} o también llamadas \textit{outputs} son las que reflejan todos los resultados útiles con base a los cuales deseamos evaluar las DMU´s.

La eficiencia de una DMU o varias DMU´s se mide en una escala de 0 a 1 o de 0 \text{100%} las dos formas son válidas, donde lo ideal para cada unidad de decisión es estar en el nivel máximo eficiente. Dentro de un análisis DEA se identifican las estimaciones de éste tipo (basadas en la eficiencia de Pareto) son obtenidas en DEA construyendo el llamado \textbf{Conjunto de Posibilidades de Producción(CPP)} que contiene todas las correspondencias factibles entre las entradas y las salidas incluyendo las observadas en las unidades de decisión que van a ser evaluadas22.

El DEA, basado en el concepto de \textbf{eficiencia de Pareto}, haciendo referencia a una asignación inicial de bienes entre un conjunto de individuos, un cambio hacia una nueva asignación que al menos mejora la situación de un individuo sin hacer que empeore la situación de los demás23. Realiza una comparación transversal de

21\textbf{UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE CIENCIAS ECONÓMICAS}: Evaluación de la eficiencia del sistema bancario guatemalteco mediante en el análisis envolvente de datos DEA, 2012.
los diferentes inputs y outputs de cada programa con los de todos los demás. La eficiencia de cada programa se evalúa comparándola con la del resto de la muestra estudiada, obteniéndose con ello un indicador de eficiencia relativa.

El modelo, utilizando técnicas de programación lineal, traza una frontera de eficiencia que se construye a partir de los programas más eficientes y que define el nivel máximo de outputs que se pueden conseguir con los inputs utilizados. Los programas eficientes son aquellos que se sitúan en la frontera eficiente, previamente calculada por el modelo.

4.3. ESTADO ACTUAL

La técnica Data Envelopment Analysis será la utilizada en la presente investigación, por lo cual en el estado actual se hace una búsqueda de los estudios y campos en que ésta ha sido ejecutada, qué resultados ha permitido y bajo qué variables y parámetros han sido desarrolladas.

En una primera búsqueda de información general sobre DEA, se encuentra la aplicabilidad y adaptabilidad a los diferentes sectores de bienes y servicios tales como salud y el proyecto “Eficiencia técnica de los centros avanzados de atención primaria de la salud de Tabasco (CAAPS). Aplicación del método de optimización análisis envolvente de datos (DEA)”; educación, “Un estudio con Análisis Envolvente de Datos de la eficiencia de los centros de educación secundaria gallegos”; deporte, “eficiencia y resultados deportivos: aplicación a la liga mexicana de fútbol”, productivo “Factores que afectan la eficiencia técnica en el Sector Cafetero Colombiano: una aplicación con análisis envolvente de datos”, y bancario “Evaluación de la Eficiencia Bancaria en Venezuela desde el Análisis de

Fronteras Deterministas “; entre otros. La técnica Análisis Envolvente de Datos se ha hecho presente en ellos por medio de algunos de los modelos desarrollados bajo ella, encontrando así, modelos CCR, BCC, BCC-BM, *Windows Analysis*, entre otros.

En el desarrollo de la presente investigación el *Data Envelopment Analysis*, será aplicado en el sector específico de transporte, en el que se han desarrollado sobre varios de sus componentes y modalidades, encontrando estudios como: “competitividad de un puerto y su relación actual con el sistema portuario español”, Revista de Ciencia, Tecnología y Medio Ambiente, Vol. XI, publicado en el año 2013; “*The Applicability of Data Envelopment Analysis to Efficiency Measurement of Container Ports*”, por Teng-Fei Wang, Dong-Wook Song y Kevin Cullinane, desarrollado en Hong Kong, en él se plantean los objetivos que se pretende llegar por medio de los análisis y para cada uno de ellos qué modelo DEA se ajusta más al cumplimiento de la meta, siendo establecidos el CCR, CCR *Additive*, *Revised CCR*, BCC, SXEF, AXEF, RCCR, GTR y BCC (+ PCA).

Así como los anteriores estudios desarrollados basados en modelos DEA, se han realizado que además del uso de ésta técnica es combinada con otras, ejemplo de esto es la investigación “Evaluación de la concentración en una ruta aérea brasiler a con modelo DEA y Frontera Invertida”, João Carlos Correia, Lidia Angulo y Eliane Gonçalves. “Evaluación de la eficiencia de las compañías aéreas brasileñas a través de un modelo híbrido de análisis envolvente de datos (DEA) y programación lineal multiobjetivo” por Juliana Quintanilha, João Carlos Correia y Lidia Angulo-Meza.

Dentro del sector específico de transporte terrestre de carga se han generado estudios sobre los diversos componentes que al analizar y optimizar la eficiencia de ellos, se genera un impacto en la prestación del servicio, así se encuentran los estudios: “Análisis de la eficiencia en costes de las empresas de transporte de
mercancía por carretera: una aproximación empírica del DEA" por Emma Castelló Taliani y Silvia Giralt Escobar; “Análisis de Eficiencia de los servicios de infraestructura en España: una aplicación al tráfico de contenedores” por Marianela González y Lourdes Trujillo. Pero dentro de esta búsqueda no se ha generado resultados de estudios enfocados a los departamentos que conforman las empresas prestadoras del servicio.

De análisis en empresas de sectores en general se encuentra tan solo “Un análisis de la eficiencia de los departamentos de la Universidad Politécnica de Cartagena”, desarrollado por José A. García, Fernando López H. y Manuel Ruiz Marín. “Un modelo para la medición de la eficiencia en los departamentos Universitarios” desarrollado en la Universidad de Sevilla por Emilio Díez y Francisco Díez.

De esta manera, proyectos con el enfoque de analizar los departamentos de empresas, en especial dedicadas al transporte terrestre de carga no se registraron en la búsqueda de estado actual del presente proyecto.
5. DESARROLLO METODOLÓGICO

Las etapas para el desarrollo del presente estudio son determinadas por los objetivos específicos propuestos en el numeral 3.2., de esta manera, se inicia con la selección de las variables y parámetros que se tendrán en cuenta para realizar la medición de los cuatro departamentos que conforman la empresa Transportes Oro S.A.S, este primer paso será el que defina bajo qué criterios debe ser calculado el nivel de eficiencia técnica de ellos. Las variables seleccionadas se presentarán de dos tipos debido a la técnica Data Envelopment Analysis, como de entrada y de salida, las primeras harán referencia a los recursos utilizados en los procesos que realizan y las de salida (outputs) a los resultados generados.

Los datos establecidos y recolectados como variables y parámetros (Anexo 1. Base de datos), serán la base para el establecimiento de los modelos matemáticos DEA, que para efecto de los análisis que se realizarán serán tres, dos de ellos entre departamentos Windows Analysis y BCC; y el CCR por cada departamento con las variables particulares que generan los respectivos procesos, permitiendo realizar análisis por períodos de tiempo específicos, comportamiento de variables y de todas las DMU´s entre sí, éste análisis de información conllevará a establecer el diagnóstico de la situación actual de los departamentos de la empresa en el período de tiempo evaluado.

Basados en los modelos y en lo observado en el diagnóstico de la situación actual de los niveles de eficiencia arrojados para las DMU´s, se establecen políticas que apunten al mejoramiento de ellos, lo que conlleva al aumento del nivel de desempeño de la compañía en general.
5.1. VARIABLES Y PARÁMETROS DE ESTUDIO

El seleccionar las variables y parámetros, deben su importancia a que determinan el curso del resto de la investigación, ya que es sobre ellos que se emprende la búsqueda de la información necesaria, la base para la selección del o los modelos que mejor se ajuste a la naturaleza de ellas. Es así como la elección de variables y parámetros a tener en cuenta, es una fase que debe quedar definida y coherente con el objetivo de la investigación, además, de concretos y enfocados, pues al contrario los resultados no serán confiables. Para efectos del presente proyecto y conociendo la importancia de esta fase, se realizaron reuniones con cada Director de departamento, con el fin de que otorgaran información que contribuyera a determinar las variables y parámetros adecuados.

Al ser el Data Envelopment Analysis la técnica a utilizar en el desarrollo de la presente investigación éstas serán de dos tipos, variables de entrada y de salida. Las variables de entrada harán referencia a los recursos requeridos por los departamentos para el desarrollo de sus actividades, y las de salida los resultados que generan cada uno de ellos.

Para el desarrollo del presente estudio se tendrán dos grupos diferentes de variables y parámetros, debido a la naturaleza de las unidades de observación y a finalidad que se quiere establecer en los análisis. De esta manera, el primer grupo de DMU’s y variables será el establecido para análisis por cada uno de los departamentos por separado y en cada uno de los meses comprendidos en el período evaluado, realizándose para cada uno un modelo CCR-O. Debido a que los resultados para cada departamento se miden de manera diferente las variables de salida (outputs), variarán según el departamento donde se generen; como variable de entrada serán considerados para todos los “costos” en los que se incurren para el desarrollo de las actividades. De esta manera, en el gráfico 1, se exponen las variables y DMU’s analizadas para efectos de este primer análisis.
El segundo grupo de variables y parámetros son establecidos debido al análisis que se desea realizar para hacer una comparación entre todos los departamentos, sin ser separados según la naturaleza de los resultados generados; sino que se unifican y se establecen como outputs, aquellas variables en la que establecen similitudes los cuatro departamentos. De esta manera será establecido en el gráfico 2, las inputs, outputs y DMU’s seleccionadas.

Fuente: Elaboración propia.

Gráfica 2. Variables y parámetros análisis entre departamentos.

Fuente: Elaboración propia.

El input “costos de operación”, incluirá el valor de los recursos consumidos para el desarrollo de actividades, costos indirectos y contratos de servicios de cada uno de los departamentos, y la de “costos de personal” que se encuentra dentro los costos de operación, pero que ha sido desagregada como variable aparte para ver su comportamiento particular, será dada por el valor pagado por concepto de los trabajadores que laboren dentro del área. El único output “eficiencia” es el valor arrojado por los modelos ya desarrollados por cada uno de los departamentos, de acuerdo a las variables y parámetros expuestos en el gráfico 1. Como DMU’s, son todos los departamentos en cada uno de los meses comprendidos en el período de enero a octubre de 2013.

5.2. MODELO DATA ENVELOPMENT ANALYSIS

5.2.1. Modelo CCR - O

En el modelo CCR – O para cada DMU se desarrolla el valor de su razón de eficiencia relativa, la cual se define como el cociente de la suma ponderada de los outputs entre la suma ponderada de los inputs, con la condición de que el valor
máximo asignable al resto de DMU´s sea igual o menor que uno. A continuación se muestra los diferentes componentes del modelo matemático que se desarrolla:

- **Subíndices**

Tabla 1. Subíndices modelo CCR-O

<table>
<thead>
<tr>
<th>Subíndice</th>
<th>Variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU j</td>
<td>j: 1, 2, 3, …, n</td>
</tr>
<tr>
<td>DMUjo (DMU observada)</td>
<td>Jo</td>
</tr>
<tr>
<td>Entrada i</td>
<td>i: 1, 2, 3, …, m</td>
</tr>
<tr>
<td>Salida r</td>
<td>r: 1, 2, 3, …, s</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

- **Parámetros**

Tabla 2. Parámetros modelo CCR-O

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{ij}</td>
<td>Cantidad de la entrada i utilizada en la DMU j.</td>
</tr>
<tr>
<td>Y_{rj}</td>
<td>Cantidad de la salida r que produce la DMU j.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

- **Variables de decisión**

Tabla 3. Variables de decisión modelo CCR-O

<table>
<thead>
<tr>
<th>Variables</th>
<th>Significado</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ij}</td>
<td>Ponderador de la entrada i utilizada en la DMU j.</td>
<td>Fracción</td>
</tr>
<tr>
<td>U_{rj}</td>
<td>Ponderador de la salida r que produce la DMU j.</td>
<td>Fracción</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
- Función Objetivo: Maximizar la eficiencia

\[\text{MAX } Z = \sum_{r=1}^{s} U_{rj} Y_{rj} \]

- Restricciones

1. Fijar denominador de la ecuación de eficiencia

\[\sum_{i=1}^{m} V_{ijo} X_{ijo} = 1 \]

2. Eficiencia de las DMU’s

\[\sum_{r=1}^{s} U_{rj} Y_{rj} - \sum_{i=1}^{m} V_{ijo} X_{ij} \leq 0 \quad \forall j \]

- No negatividad

\[V_{ijo}, U_{rjo} \geq 0 \]
Con el fin de ejemplificar el modelo expuesto con datos utilizados en el presente proyecto, se toma del modelo CCR-O para departamento comercial como muestra la DMU: “departamento comercial enero 2013”. De la manera como fue desarrollado para esta DMU, fue realizado para cada una de las DMU’s de los cuatro modelos CCR-O (uno por cada departamento).

- Función objetivo:
 \[\max Z = 1.999.658.297,9U_1 + 2U_2 \]

- Restricciones:

Restricción de variables de entrada

\[18.145.582V_1 = 1 \]

Restricciones de eficiencias DMU’s

Departamento comercial enero 2013:

\[\frac{1.999.658.297,9U_1 + 2U_2}{18.145.582V_1} \leq 1 \]

Departamento comercial febrero 2013:

\[\frac{2.270.409.830,05U_1 + 1U_2}{9.726.137V_1} \leq 1 \]

Departamento comercial marzo 2013:

\[\frac{2.041.922.940,71U_1 + 1U_2}{9.335.001V_1} \leq 1 \]

. . .

Departamento comercial octubre 2013:

\[\frac{2.362.199.366,78U_1 + 0U_2}{8.623.639V_1} \leq 1 \]
No negatividad

\[u_1, u_2, v_1 \geq 0 \]

5.2.2. Modelo BCC-O

Modelo BCC (debido a Banker et al. según Boussofiane et al. y Pedraja y Salinas): este modelo fue propuesto con el propósito de estimar la eficiencia puramente técnica eliminando la influencia que pudiera tener la existencia de economías de escala en la evaluación del ratio de eficiencia de las DMU’s. El hecho es que la medida de eficiencia de una unidad está condicionada no sólo por la gestión de la misma sino también por la escala en la que opere y el modelo CCR suponía tácitamente la existencia de rendimientos constantes a escala (RKE) al definir las restricciones del modo que proponía. Esto significaba que todas las unidades se comparaban como si estuvieran sometidas a rendimientos constantes y no se contemplaba la posibilidad de existencia de ineficiencias debidas a las diferencias entre las escalas operativas en cada DMU.

- Subíndices

Tabla 4. Subíndices modelo BCC-O

<table>
<thead>
<tr>
<th>Subíndice</th>
<th>Variación</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU j</td>
<td>j: 1, 2, 3, ..., n</td>
</tr>
<tr>
<td>DMU jo(DMU observada)</td>
<td>Jo</td>
</tr>
<tr>
<td>Entrada i</td>
<td>i: 1, 2, 3, ..., m</td>
</tr>
<tr>
<td>Salida r</td>
<td>r: 1, 2, 3, ..., s</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
- Parámetros

Tabla 5. Parámetros modelo BCC-O

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{ij}</td>
<td>Cantidad de la entrada i utilizada en la DMU j.</td>
</tr>
<tr>
<td>Y_{rj}</td>
<td>Cantidad de la salida r que produce la DMU j.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

- Variables de decisión

Tabla 6. Variables de decisión modelo BCC-O

<table>
<thead>
<tr>
<th>Variables</th>
<th>Significado</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ij}</td>
<td>Ponderador de la entrada i utilizada en la DMU j.</td>
<td>Fracción</td>
</tr>
<tr>
<td>U_{rj}</td>
<td>Ponderador de la salida r que produce la DMU j.</td>
<td>Fracción</td>
</tr>
<tr>
<td>u_o</td>
<td>Término constante, que define los rendimientos constantes.</td>
<td>Unidades</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

- Función Objetivo: Maximizar la eficiencia

$$MAX \quad Z = \sum_{r=1}^{s} U_{rj} Y_{rj} + u_o$$

- Restricciones

1. Con respecto a las entradas.

$$\sum_{i=1}^{m} V_{ijo} X_{ijo} = 1 \quad \forall i$$
2. Con respecto a las salidas.

\[
\sum_{r=1}^{s} U_{rj} Y_{rj} - \sum_{i=1}^{m} V_{ijo} X_{ij} - u_o \leq 0 \quad \forall r
\]

3. Con respecto a los ponderadores

\[
V_{ijo}, U_{rjo} \geq 0
\]

Con el fin de ejemplificar el modelo anteriormente descrito, se selecciona la primera DMU que se introducen en el presente estudio, “Departamento de Recursos Humanos en enero de 2013”, mostrando el proceso desarrollado con las 40 seleccionadas.

Función Objetivo

\[
MAX \, Z = 0,8041u_1 + u_o
\]

Restricciones

1. Fijar denominador de la ecuación de eficiencia

\[
8.059.651v_1 + 1.206.533v_2 = 1
\]

2. Eficiencia de las DMU’s

- Dpto. Recursos Humanos Enero 2013

\[
(0,8041u_1) - (8.059.651v_1 + 1.206.533v_2) - u_o \leq 0
\]
• Dpto. Operaciones Enero 2013
\[(0.7698u_1) - (1.263.474.756v_1 + 180.434.994v_2) - u_o \leq 0\]
• Dpto. Comercial Enero 2013
\[(0.2547u_1) - (9.790.619v_1 + 8.354.963v_2) - u_o \leq 0\]

• Dpto. Financiero Octubre 2013
\[(1u_1) - (1.038.652v_1 + 13.895.523v_2) - u_o \leq 0\]

3. No negatividad
\[v_1, v_2, u_1 \geq 0\]

5.2.3. Modelo Windows Analysis

El modelo windows analysis, relaciona los inputs y outputs de diferentes unidades a lo largo de diferentes períodos de tiempo. La amplitud de la “ventana”, es decir, el número de períodos de tiempo que entran en comparación depende del tipo de problemas y de las combinaciones que desee realizar el analista, y por tanto el número de ventanas está por determinar (aplicado al presente proyecto, nueve ventanas, debido a los nueve meses seleccionados).

Windows analysis desarrolla el mismo modelo matemático que realiza el BCC(numeral 5.2.2), se diferencia de él, en la selección de grupos de referencia desiguales que intervienen en cada una de las "ventanas", de forma que se obtienen diversos valores del score de eficiencia para cada uno de los períodos, ya que depende de la comparación de los diferentes períodos del análisis.
Es así como para la ventana uno, se desarrollan modelos DEA para cada una de las DMU, tomando como grupo de referencia el resto de DMU´s presentes en un solo período. En el tabla 7, se puede evidenciar el proceso para la DMU₁, donde ésta es mostrada subrayada con “x” color y el grupo de referencia rodeado con doble línea del mismo color, siendo este con el que se comparará el comportamiento.

Tabla 7. Desarrollo de window 1

<table>
<thead>
<tr>
<th>Período 1</th>
<th>Período 2</th>
<th>Período 3</th>
<th>Período ...</th>
<th>Período x</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
</tr>
<tr>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
</tr>
<tr>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Así mismo es realizado en cada de las ventanas ampliando el grupo de referencia al no ser solamente un período el sombreado en doble línea, sino según el número de ventana. Retomando el ejemplo de la tabla 7, para la ventana número dos, y el nivel de eficiencia del período uno de la DMU₁ será el grupo de referencia los presentados en el período uno y dos, para el nivel de la misma DMU en el período dos, el grupo de referencia lo conformaría período dos y tres, y así sucesivamente para esta y el resto de DMU´s, este proceso se ejemplifica en la tabla 8.
Tabla 8. Ejemplificación ventana 2.

<table>
<thead>
<tr>
<th>Período 1</th>
<th>Período 2</th>
<th>Período 3</th>
<th>Periodo 3</th>
<th>Periodo 3</th>
<th>Periodo 3</th>
<th>Periodo 3</th>
<th>Periodo 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
<td>DMU₁</td>
</tr>
<tr>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
<td>DMU₂</td>
</tr>
<tr>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
<td>DMU₃</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
<td>DMUᵢ</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
<td>DMUₙ</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Eligiendo la DMU el departamento de recursos humanos, para mostrar el proceso ya especificado en la tabla 7 con una de las DMU perteneciente a las que conforman los modelos del presente proyecto, en los tres primeros meses del período de tiempo evaluado y el último de ellos, así se presenta en la tabla 9. En la tabla 10, se hace referencia al proceso ya explicado mediante la ejemplificación de la tabla 8, se toma como referencia el mismo departamento de recursos humanos en los mismos períodos de tiempo.

Tabla 9. Departamento de Recursos Humanos en W₁.

<table>
<thead>
<tr>
<th>ene-13</th>
<th>feb-13</th>
<th>mar-13</th>
<th>...</th>
<th>oct-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. RH</td>
<td>D. RH</td>
<td>D. RH</td>
<td>D. RH</td>
<td>D. RH</td>
</tr>
<tr>
<td>D. Operaciones</td>
<td>D. Operaciones</td>
<td>D. Operaciones</td>
<td>D. Operaciones</td>
<td>D. Operaciones</td>
</tr>
<tr>
<td>D. Comercial</td>
<td>D. Comercial</td>
<td>D. Comercial</td>
<td>D. Comercial</td>
<td>D. Comercial</td>
</tr>
<tr>
<td>D. Financiero</td>
<td>D. Financiero</td>
<td>D. Financiero</td>
<td>D. Financiero</td>
<td>D. Financiero</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
5.3. DIAGNÓSTICO DE LA SITUACIÓN ACTUAL

5.3.1. Análisis Modelo CCR-O

Mediante la aplicación del modelo CCR, se busca establecer cómo fue la eficiencia presentada por cada departamento, teniendo en cuenta que cada uno de ellos genera a través de sus procedimientos resultados diferentes. Así son desarrollados cuatro modelos CCR-O: Departamento de Operaciones, Recursos Humanos, Comercial y Financiero (Los niveles de eficiencia generados por cada uno de ellos, se incluyen como anexo 2). De igual manera, permite que se analice cómo fue el comportamiento de las variables seleccionadas para cada uno de ellos.

Iniciando con el modelo generado para el Departamento de Operaciones, donde fueron consideradas las variables de salida kilómetros recorridos y clientes atendidos, y de entrada costos. Se evidencia en el gráfico 3 los niveles de eficiencia en cada uno de los meses que comprenden el período evaluado, identificando a los meses de septiembre, enero, y abril, como los críticos para el departamento de operaciones, con niveles de eficiencia de 74,88%, 76,98% y 79,59%. Situación contraria presentada en el mes de mayo, presentado como...
único mes con eficiencia del 100%, pero no Pareto eficiente, al contar con ponderador cero en la variable de clientes atendidos. El resto de meses tuvo comportamiento ineficiente, llevándolo a contar con un promedio de niveles de eficiencia del 84.89%.

Gráfica 3. Niveles de eficiencia departamento de operaciones.

Fuente: Elaboración propia.

La variable de salida “kilómetros recorridos” es la que más castiga a los meses evaluados con ponderadores de cero, tan sólo dos de los diez períodos de tiempo analizados cuentan con pesos diferentes de cero en esta variable, siendo ellos marzo y mayo, los ocho restantes asumen pesos de cero en esta variable obteniendo un peso totalizado de 6,86E-06. La otra variable de salida “clientes atendidos”, asigna ponderadores de cero a dos de los meses analizados, siendo ellos los dos a los que “kilómetros recorridos” le asignó ponderadores diferentes de cero. Finalmente única variable de entrada “costos” se cataloga la que más favorece al departamento de operaciones, al asignar en los diez meses seleccionados ponderadores diferentes de cero.
En el análisis de correlaciones (tabla 11) se identifica una correlación significativa de 0.9231, dada entre las variables kilómetros recorridos y clientes atendidos, teniendo ellas dos relación directamente proporcional mostrando que entre más kilómetros recorridos se registren, mayor es el número de clientes atendidos.

En el modelo establecido para el Departamento de Recursos Humanos, toma como outputs capacitaciones, reclutamientos y actividades de bienestar social; como único input se encuentra la variable de “costos”. Analizando los niveles de eficiencia arrojados se evidencian los meses de abril, julio y octubre como los de comportamiento más crítico de este departamento, presentando niveles de eficiencia de 10,82%, 12,87% y 14,80%, siendo estos meses niveles de eficiencia muy baja. De allí siguen los meses de mayo, marzo y junio con niveles de 31,21%, 33,68% y 43,89%, Demostrando que el 60% de los periodos seleccionados figuran ineficientes con valores por debajo del 50% de eficiencia. Dentro de los meses que figuran como ineficientes con los niveles más altos de 80,41% y 81,03%, pertenecen a los meses de enero y agosto, respectivamente. Tan sólo en los meses de febrero y septiembre se muestra eficiencia (100%) en el comportamiento presentado. Estos niveles de eficiencia llevan a que ese departamento tenga un promedio de 50,87% en los niveles de eficiencia. Estos niveles de eficiencia son representados de manera visual en el gráfico 4, donde de marzo a julio se presentan los niveles de eficiencia más bajo y que vuelve en el mes de octubre.

Tabla 11. Correlaciones Departamento Operaciones

<table>
<thead>
<tr>
<th></th>
<th>Costo</th>
<th>Kilómetros recorridos</th>
<th>Clientes atendidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costo</td>
<td>1</td>
<td>0,4981</td>
<td>0,6724</td>
</tr>
<tr>
<td>Kilómetros recorridos</td>
<td>0,4981</td>
<td>1</td>
<td>0,9231</td>
</tr>
<tr>
<td>Clientes atendidos</td>
<td>0,6724</td>
<td>0,9231</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Como variable que menos favorece el cálculo de los niveles de eficiencia para este departamento, se encuentra “actividades de bienestar social”, en la cual, se asigna un ponderador de cero en nueve de los 10 meses evaluados, verificando con la base de datos, en ellos no se realizó ninguna actividad de esta clase, tan sólo el mes de septiembre recibió ponderador diferente de cero en esta variable, por la realización de una de estas actividades. Las dos variables de salida restantes, “capacitaciones” y “reclutamientos” asignan a igual número de DMU’s ponderadores de cero, castigando cada una a cinco meses diferentes, capacitaciones por peso totalizado es la que representa el mayor con 0,0317.

En el input “costos” todas las DMU’s tomaron ponderadores diferentes de cero, pero aun así es la variable que en peso totalizado recibe el menor con 3,27E-06, mostrando que aunque haya asignado ponderadores diferentes de cero, estos fueron pequeños. Analizando los ponderadores asignados específicamente a los meses de febrero y septiembre, se evidencia que dentro de sus ponderadores, febrero llegó al 100% pero con ponderadores de cero en las variables de “capacitaciones” y “actividades de bienestar social”, y septiembre en el output de...
“reclutamiento”. Demostrando que este departamento no presentó mes Pareto eficiente.

Tabla 12. Correlaciones Departamento Recursos Humanos

<table>
<thead>
<tr>
<th></th>
<th>Costos</th>
<th>Capacitaciones</th>
<th>Reclutamiento</th>
<th>Actividades de Bienestar Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos</td>
<td>1</td>
<td>-0,3450</td>
<td>-0,7370</td>
<td>0,4819</td>
</tr>
<tr>
<td>Capacitaciones</td>
<td>-0,3450</td>
<td>1</td>
<td>0,10749</td>
<td>0,02151</td>
</tr>
<tr>
<td>Reclutamiento</td>
<td>-0,7370</td>
<td>0,1075</td>
<td>1</td>
<td>-0,3297</td>
</tr>
<tr>
<td>Actividades de</td>
<td>0,4819</td>
<td>0,0215</td>
<td>-0,3297</td>
<td>1</td>
</tr>
<tr>
<td>Bienestar Social</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En los niveles de correlación presentados en la tabla 12, se evidencia que no se presentó ninguna significativa, lo que se traduce en variables con comportamiento independiente.

En el análisis de los niveles de eficiencia presentados en el período evaluado, por el **Departamento Comercial** y expresados mediante el gráfico 5, se identifica el mes de enero como el de menor nivel de eficiencia con 25,47%, siendo de enero a julio un período de niveles de eficiencia bajos, volviendo a presentarse la ineficiencia en octubre, es decir, tan sólo en los meses agosto y septiembre este departamento es eficiente en sus procesos.

Los meses dentro del grupo de ineficientes que mayor nivel presentan son mayo y junio con niveles de eficiencia técnica de 67,41% y 62,86%, respectivamente. De allí, siguen octubre y julio con niveles de 58,75% y 57,58%. Por último, los meses febrero y marzo que presentan niveles de eficiencia similar (50,06% y 50,25%).
Gráfica 5. Niveles de eficiencia Departamento Comercial

Para el análisis de las variables que fueron tomadas en cuenta para este departamento (input: costos, outputs: ventas y clientes nuevos), se muestra que las variables “costos” y “ventas” otorgaron a todos los meses ponderadores diferentes de cero, sin castigar a alguna de las DMU’s; de estas dos la que presenta el mayor peso totalizado es costos con 2,00E-06, el de ventas es 4,00E-09. La única de las variables que castiga DMU’s es clientes nuevos, siendo el factor que más se debe enfocar el departamento comercial en mejorar, a siete de los diez meses le fueron asignados ponderadores de cero en esta variable específica.

La tabla 13 de correlaciones, demuestra que las variables seleccionadas presentan comportamiento independiente entre ellas, al no presentar niveles de correlaciones significativos.
Tabla 13. Correlaciones variables Departamento Comercial.

<table>
<thead>
<tr>
<th></th>
<th>Costos</th>
<th>Ventas</th>
<th>Clientes Nuevos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos</td>
<td>1</td>
<td>-0.4602</td>
<td>-0.0643</td>
</tr>
<tr>
<td>Ventas</td>
<td>-0.4602</td>
<td>1</td>
<td>-0.3140</td>
</tr>
<tr>
<td>Clientes Nuevos</td>
<td>-0.0643</td>
<td>-0.3140</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Finalmente en el análisis para el departamento financiero mediante el modelo CCR-O, se consideró la variable de salida “recaudo” y de entrada “costos”. En el gráfico 6, se exponen los niveles de eficiencia presentados por este departamento en cada uno de los meses que comprenden el período evaluado, se identificó que los meses de enero, febrero y junio obtuvieron los más bajos niveles de eficiencia con 62,75%, 66,36% y 65,59%. Caso contrario se presentó el mes de octubre como único mes con eficiencia del 100%, Pareto eficiente, ya fue calificado en todas sus variables con ponderadores diferentes a “0”. El resto de meses presentaron como ineficientes, variando en un rango de 69,39% y 86,29%, llevándolo a contar con un promedio de niveles de eficiencia del 76.5%.

Fuente: Elaboración propia.
Analizando los ponderadores que le fueron asignados para la calificación de los niveles de eficiencia al departamento financiero, se encuentra que ambas variables en todos los meses seleccionados tomaron ponderadores diferentes de cero, es decir que en todos los cálculos realizados fueron tomadas en cuenta las dos variables, sin embargo en la que se evidencia que arrojó mayores pesos fue en la variable de entrada “costos” con un peso totalizado de 9,49E-07, y “recaudo” obtuvo un peso totalizado de 4,68E-09.

Tabla 14. Correlaciones Departamento Financiero

<table>
<thead>
<tr>
<th></th>
<th>Costos</th>
<th>Recaudo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos</td>
<td>1</td>
<td>0.544163186</td>
</tr>
<tr>
<td>Recaudo</td>
<td>0.54416319</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En el análisis de correlaciones (tabla 14) se evidencia que las dos variables seleccionadas presentan comportamientos independientes, es decir, que una no guarda relación con lo presentado por la otra.

5.3.2. Análisis Modelo Windows Analysis

Windows Analysis permite realizar análisis por períodos de tiempos específicos mediante ventanas en las cuales se evidencia la tendencia y comportamiento de las DMU´s a través del periodo evaluado. Los análisis pueden ser observados por filas o por columna, donde las filas muestran como fue la evolución de los niveles de eficiencia de la DMU en el periodo de tiempo seleccionado; y por columnas refleja el comportamiento de las DMU´s evaluadas un periodo específico.

Para efectos de este estudio se han seleccionado los departamentos de la empresa Transportes Oro S.A.S (Departamento de Recursos Humanos, de
operaciones, comercial y financiero) en el período de tiempo de enero a octubre de 2013, y con fines de análisis se tomará: el período de tiempo seleccionado para evaluar las DMU´s que comprende 10 meses, el primer semestre del año 2013 y los 4 meses restantes. Se aclara que este modelo fue desarrollado con variables diferentes a las tomadas en los análisis CCR-O, siendo de esta manera, “costos operativos” y “costos de personal” como inputs, y de output “eficiencia”.

Iniciando con el análisis del período del tiempo global, enero a octubre de 2013, se exponen en la tabla 15, los niveles de eficiencia arrojados para cada una de las DMU´s respecto a los niveles presentados entre todas ellas, y por columnas cómo fueron las eficiencias presentadas por las unidades de observación en cada uno de los meses.

Tabla 15. Window 10.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D. RH</td>
<td>0,8041</td>
<td>0,3368</td>
<td>0,1082</td>
<td>0,3121</td>
<td>0,4389</td>
<td>0,1287</td>
<td>0,8103</td>
<td>1</td>
<td>0,1480</td>
<td>0,5087</td>
<td></td>
</tr>
<tr>
<td>D. OPERACIONES</td>
<td>0,7698</td>
<td>0,9593</td>
<td>0,9008</td>
<td>0,7959</td>
<td>1</td>
<td>0,8259</td>
<td>0,8369</td>
<td>0,8301</td>
<td>0,7488</td>
<td>0,8211</td>
<td>0,8489</td>
</tr>
<tr>
<td>D. COMERCIAL</td>
<td>0,2547</td>
<td>0,5404</td>
<td>0,4888</td>
<td>0,6741</td>
<td>0,6286</td>
<td>0,5758</td>
<td>1</td>
<td>1</td>
<td>0,5875</td>
<td>0,6750</td>
<td></td>
</tr>
<tr>
<td>D. FINANCIERA</td>
<td>0,6490</td>
<td>0,7653</td>
<td>0,9325</td>
<td>0,9129</td>
<td>0,8432</td>
<td>0,7547</td>
<td>1</td>
<td>0,9401</td>
<td>0,99995</td>
<td>1</td>
<td>0,8798</td>
</tr>
<tr>
<td>Promedio</td>
<td>0,6194</td>
<td>0,9312</td>
<td>0,6776</td>
<td>0,5765</td>
<td>0,7073</td>
<td>0,6620</td>
<td>0,6354</td>
<td>0,8951</td>
<td>0,9372</td>
<td>0,6391</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En un análisis por departamentos el que mostró nivel de eficiencia más alto fue el departamento de financiero con 87.98%, seguido por el de operaciones con un nivel de eficiencia del 84.89%; situación contraria fue mostrada por el departamento de recursos humanos mostrando el nivel más bajo con un 50.87%, el departamento comercial en su promedio de niveles de eficiencia obtuvo 67,50%.

Para el departamento de recursos humanos, identificado con el nivel de eficiencia más bajo, se establecen que los meses en los que obtuvo los niveles más bajos fueron abril, julio y octubre, con niveles de eficiencia de 10,82%, 12,87% y
14,80%, y los de mayor rendimiento fue febrero y septiembre donde alcanzó la eficiencia técnica del 100%. Por el contrario, el departamento financiero que presenta el mayor promedio de eficiencia dos de los meses que representa para Recursos Humanos los más bajos para él son eficientes (julio y octubre), los niveles de eficiencia más bajos fueron enero, febrero y junio siendo ellos 64,90%, 76,53%, 75,47%. El mes de septiembre por una diferencia mínima no alcanza a ser eficiente, dando su nivel el 99,9995% de eficiencia.

El departamento de Operaciones y comercial, guardan en común dos de los tres meses con menor nivel de eficiencia por cada uno de ellos, enero y abril, en el primero para operaciones representó un nivel de 76,98% y para comercial 25,47%; en abril para operaciones tuvo un nivel de eficiencia de 79,59% y para comercial 48,88%; sin embargo operaciones presenta su nivel más bajo de eficiencia en el mes de septiembre con 74,88%, y para comercial su tercer mes con un menor nivel de eficiencia es marzo con 54,04%.

El Departamento comercial representa el mayor número de meses eficientes con 100%, siendo ellos febrero, agosto y septiembre, pero los niveles presentados en el resto de meses son tan bajos que llevan al promedio del tiempo total como el segundo más bajo. Para el departamento de operaciones mayo representa el único mes eficiente, seguido por el mes de febrero y marzo que dentro de los meses ineficientes para él, son los de niveles más altos de eficiencia con 95,93% y 90,08%.

En un análisis por columnas y basados en el gráfico 7, se evidencia el mes de abril como el pico más bajo de los niveles presentado por los departamentos con 57,65%, seguido por julio y octubre con niveles 63,54% y 63,91%, respectivamente; como los picos más altos se encuentran septiembre y febrero con niveles de eficiencia de 93,72% y 93,12%.
El primer mes del año inicia con un promedio de niveles de eficiencia de 61,94%, pasa en el mes siguiente al segundo promedio más alto del período analizado, generándose en este momento el cambio de un mes para otro más grande, a partir de allí hasta el mes de abril los promedio decrecen, pasando de uno de 93,12% a 57,65%, en el mes de mayo tiende a subir nuevamente hasta 70,73%, pero desde allí vuelve y toma un ciclo de decrecimiento hasta julio que se presenta con un promedio de niveles de eficiencia de 63,54%, a partir de allí sube en agosto a un 89,51%, para llegar en septiembre al promedio de eficiencia más alto presentado en el período seleccionado (93,72%), éste cae nuevamente en octubre con un promedio de niveles de 63,91%.

Gráfico 7. Promedio de niveles de eficiencia por meses W10.

Fuente: Elaboración propia.

Pasando a un análisis más particular correspondiente a los niveles de eficiencia presentados en el primer semestre del año (tabla 16), se evidencia nuevamente el mismo orden de niveles presentados por los departamentos, el financiero como el que presenta el mayor nivel de eficiencia promedio con 93,22%, seguido por operaciones con 87,53%, comercial con 77,56% y finalmente recursos humanos con 50%.
Tabla 16. Análisis semestral

<table>
<thead>
<tr>
<th></th>
<th>ene-13</th>
<th>feb-13</th>
<th>mar-13</th>
<th>abr-13</th>
<th>may-13</th>
<th>jun-13</th>
<th>Promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. RH</td>
<td>0,8041</td>
<td>1</td>
<td>0,3368</td>
<td>0,1082</td>
<td>0,3121</td>
<td>0,4389</td>
<td>0,5000</td>
</tr>
<tr>
<td>D. OPERACIONES</td>
<td>0,7698</td>
<td>0,9593</td>
<td>0,9008</td>
<td>0,7959</td>
<td>1</td>
<td>0,8259</td>
<td>0,8753</td>
</tr>
<tr>
<td>D. COMERCIAL</td>
<td>0,2547</td>
<td>0,9999992</td>
<td>0,8896</td>
<td>0,7260</td>
<td>0,9999995</td>
<td>0,7832</td>
<td>0,7756</td>
</tr>
<tr>
<td>D. FINANCIERA</td>
<td>0,7387</td>
<td>1</td>
<td>1</td>
<td>0,9798</td>
<td>1</td>
<td>0,8749</td>
<td>0,9322</td>
</tr>
<tr>
<td>Promedio</td>
<td>0,6418</td>
<td>0,9898</td>
<td>0,7818</td>
<td>0,6525</td>
<td>0,8280</td>
<td>0,7307</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

En el análisis realizado a la tabla 13, se evidencia que los niveles de eficiencia presentados en los seis primeros meses del año en los departamentos de recursos humanos y operaciones, no cambian respecto a los de los seis primeros meses expuestos en la tabla 12, donde se relaciona el período completo. Esto se debe a que dentro del primer semestre del año se encuentra el nivel más alto de eficiencia, que fue tomado como referencia para el cálculo del resto de niveles de estos dos departamentos. Sabiendo esto, para el departamento recursos humanos abril sigue siendo el mes más crítico con el mismo 10,82%, y el mejor febrero con un 100% de eficiencia. Y para operaciones de igual manera, mayo como el único eficiente y el de menor enero 76,98%.

Para los departamentos comercial y financiera, la referencia cambia, o sea, los niveles de eficiencia también. Sin embargo, enero sigue representando para ambos el mes de menor nivel de eficiencia, para comercial con 25,47% y para financiera con 64,90%. En este grupo de referencia, los meses de febrero, marzo y mayo se vuelven eficientes para el departamento financiero. Mientras que comercial por poco logra eficiencia en febrero y mayo, quedando en estos dos meses con niveles de eficiencia de 99,99992% y 99,99995%.
Al observar la gráfica 8, se evidencia el mes de enero y abril como los que representan el promedio más bajo de niveles de eficiencia con 64,18% y 65,25%, respectivamente. De enero a febrero se pasa del pico más bajo, al más alto de 98,98%, comenzando un descenso hasta abril donde se presenta el segundo pico más bajo, se recupera nuevamente en el mes de mayo con un promedio de niveles de eficiencia de 82,80%, y junio decae nuevamente con 73,07%.

Para finalizar el análisis por grupos de referencia específicos se toma el correspondiente a últimos cuatro meses. En el análisis de este período de tiempo se generan los niveles de eficiencias relacionados en la tabla 17.

Tabla 17. Niveles de eficiencia último cuatro meses.

<table>
<thead>
<tr>
<th></th>
<th>jul-13</th>
<th>ago-13</th>
<th>sep-13</th>
<th>oct-13</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. RH</td>
<td>0,1335</td>
<td>1</td>
<td>1</td>
<td>0,1585</td>
<td>0,5730</td>
</tr>
<tr>
<td>D. OPERACIONES</td>
<td>0,8369</td>
<td>0,8301</td>
<td>0,7488</td>
<td>0,8211</td>
<td>0,8092</td>
</tr>
<tr>
<td>D. COMERCIAL</td>
<td>0,5758</td>
<td>1</td>
<td>1</td>
<td>0,5875</td>
<td>0,7908</td>
</tr>
<tr>
<td>D. FINANCIERA</td>
<td>1</td>
<td>0,9401</td>
<td>1</td>
<td>1</td>
<td>0,9850</td>
</tr>
<tr>
<td>Average</td>
<td>0,6366</td>
<td>0,9426</td>
<td>0,9372</td>
<td>0,6418</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
El departamento que mostró el nivel de eficiencia más alta entre los cuatro meses evaluados de julio a octubre del 2013, fue el financiero, seguido por operaciones y comercial, con 98.50%, 80.92% y 79.08%, respectivamente; mientras que el nivel más bajo lo sigue presentando el departamento de recursos humanos con 57.30%, aunque obtuvo un nivel de eficiencia del 100% en los meses agosto y septiembre, en julio y octubre obtuvieron un nivel bajo del 13.35% y 15.85%, quedando en el promedio más bajo este análisis.

Gráfica 9. Promedio niveles de eficiencia en los últimos 4 meses.

![Promedio niveles de eficiencia en últimos 4 meses](image)

Fuente: Elaboración propia.

El departamento financiero presentó 3 de los 4 meses analizados un 100% de eficiencia y el mes restante agosto con un nivel alto de 94.01%. El departamento operativo tuvo su mes con nivel de eficiencia más baja en septiembre con un nivel de 74.88%, y el más alto julio con 83.69%. Comercial presenta eficiencia en los meses de agosto y septiembre y como menor nivel de eficiencia julio con 57.58%. Los meses de agosto y septiembre presentaron los mejores niveles de eficiencia entre departamentos para la empresa con un 94.26% y 93.72%, como se
evidencia en la gráfica 9, muy similares en el nivel, estando ubicados en medio de los meses con más bajo nivel de eficiencia entre departamentos, enero y octubre con 63.66% y 64.18%, respectivamente.

Con el fin de obtener una mayor visibilidad de cómo fue el desempeño de cada uno de los departamentos, según los análisis realizados mediante el modelo Windows Analysisy los diferentes períodos de tiempo seleccionados, se realiza la tabla 18.

Tabla 18. Resumen departamento por períodos analizados.

<table>
<thead>
<tr>
<th>DEPARTAMENTO</th>
<th>PERÍODO</th>
<th>OBSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTAMENTO RECURSOS HUMANOS</td>
<td>COMPLETO</td>
<td>Dos de los diez meses evaluados fueron eficientes febrero y septiembre. Los niveles más bajos se presentaron en abril, julio y octubre con 10.82%, 12.87% y 14.80%, respectivamente. Obtuvo un promedio de eficiencia de 50.87%.</td>
</tr>
<tr>
<td>PRIMER SEMESTRE</td>
<td></td>
<td>En este caso solo logró ser eficiente solamente el mes de febrero; el mes que presentó un nivel más bajo de eficiencia fue el mes de abril con 10.82% y entre todos los meses analizados se obtuvo un promedio de eficiencia de 50.00%.</td>
</tr>
<tr>
<td>ÚLTIMOS CUATRO MESES</td>
<td></td>
<td>En el análisis expuesto, los meses agosto y septiembre fueron eficientes, mientras que los meses julio y octubre obtuvieron niveles muy bajos de eficiencia 13.85% y 15.82%, respectivamente. La eficiencia promedio entre todos los meses analizados fue de 57.30%.</td>
</tr>
<tr>
<td>DEPARTAMENTO OPERACIONES</td>
<td>COMPLETO</td>
<td>El mes de mayo fue eficiente con respecto al período evaluado. El mes que presentó el nivel más bajo de eficiencia fue el mes de septiembre con 74.88% y entre todos los meses analizados se obtuvo un promedio de eficiencia de 84.88%.</td>
</tr>
<tr>
<td>PRIMER SEMESTRE</td>
<td></td>
<td>Mayo fue eficiente y el nivel más bajo se presentó en el mes de enero con un 76.97%. Entre todos los meses analizados obtuvo un promedio de eficiencia de 87.52%.</td>
</tr>
<tr>
<td>DEPARTAMENTO DE OPERACIONES</td>
<td>PERÍODO</td>
<td>OBSERVACIÓN</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>DEPARTAMENTO DE OPERACIONES</td>
<td>ÚLTIMOS CUATRO MESES</td>
<td>Este departamento no logra ser eficiente en ninguno de los meses evaluados en el período seleccionado teniendo como el nivel más alto de eficiencia 83.69% presentado en el mes de julio y en el nivel más bajo en el mes de septiembre con un 74.88%. En promedio se llegó a 80.92%.</td>
</tr>
<tr>
<td>DEPARTAMENTO COMERCIAL</td>
<td>COMPLETO</td>
<td>Dos de los diez meses evaluados fueron eficientes agosto y septiembre. Los meses más bajos son enero y abril con un 25.46%, 48.87% y entre todos los meses obtuvo promedio de eficiencia de 67.49%.</td>
</tr>
<tr>
<td></td>
<td>PRIMER SEMESTRE</td>
<td>El mes con más bajo nivel de eficiencia fue enero con un 25.46% y para los meses restantes no se logró la eficiencia, pero sí obtuvo niveles altos como en el mes de febrero y mayo con 99.99% para ambos meses. El promedio de eficiencia para este departamento fue del 77.75%.</td>
</tr>
<tr>
<td></td>
<td>ÚLTIMOS CUATRO MESES</td>
<td>Dos de los cuatro meses evaluados son eficientes agosto y septiembre del 2013, los niveles más bajos se presentaron en los meses julio y octubre con un 57.58% y 58.75%. Entre todos los meses obtuvo promedio de eficiencia de 79.08%.</td>
</tr>
<tr>
<td>DEPARTAMENTO FINANCIERO</td>
<td>COMPLETO</td>
<td>Este departamento presentó niveles de eficiencia altos, pero solo logró ser eficiente en dos de los meses evaluados octubre y julio. El nivel más bajo lo presentó el mes de enero con 64.89% El promedio de eficiencia para los meses evaluados fue de 87.97%.</td>
</tr>
<tr>
<td></td>
<td>PRIMER SEMESTRE</td>
<td>Febrero, marzo y mayo fueron eficientes, el nivel más bajo se presentó en el mes enero con un 73.86% y el promedio fue 93.22%.</td>
</tr>
<tr>
<td></td>
<td>ÚLTIMOS CUATRO MESES</td>
<td>Tres de los cuatro meses evaluados fueron eficientes, el mes restante logró un 94.01%, obteniendo un promedio de 98.50%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
5.3.3. Análisis Modelo BCC

En la aplicación de este análisis se tuvieron en cuenta las Variables y parámetros para análisis entre departamentos, expuestas en el gráfico 2, siendo estas, “costos operativos” y “costos de personal” como inputs, y de output “eficiencia”. Este modelo permite la realización de proyecciones con cambios de valores sobre las variables, que conllevan a la eficiencia de las DMU’s, además, muestra los pesos asignados a cada una de las variables seleccionadas, determinando la influencia que tuvieron en el cálculo de los niveles de eficiencia.

El modelo identifica a nueve de las 40 DMU’s como eficientes, de las cuales los departamentos financiera y comercial fueron los que más generaron meses eficientes, haciéndose presente cada uno con tres meses eficientes; los de comercial corresponden a febrero, agosto y septiembre, y los de financiera, julio, septiembre y octubre. Recursos humanos figura con dos meses eficientes, siendo estos, febrero y septiembre, y finalmente el departamento operativo con un solo mes, siendo este, mayo.

En el análisis de ponderadores otorgados a las variables se encuentra que a “eficiencia” que es la única output, le es asignado como ponderador mínimo el valor de uno (1). Se toma como referencia el grupo de DMU’s con eficiencia técnica de 100%, descrito en el párrafo anterior, para realizar el análisis de los ponderadores asignados a cada una de ellas, se encuentra que el departamento comercial en el mes de agosto logra nivel de eficiencia, pero para esto le fue asignado en ambas variables de entrada “costos operativos” y “costos de personal” ponderadores de cero. Sólo a las DMU’s de recursos humanos y comercial, tanto en febrero como en septiembre y financiera en octubre, recibieron ponderadores diferentes de cero en todas las variables. Las tres restantes, operaciones en el mes de mayo, departamento financiero mes de julio y septiembre reciben ponderador de cero en “costos de personal”.

56
La variable que más afecta al grupo de DMU´s con eficiencia técnica del 100% con ponderadores de cero, es “costos de personal”, siendo el peso de cero para cuatro unidades de observación. Y la que más beneficia, “costos de operación”, la cual asigna ponderador de cero a solo una DMU.

En un análisis de los ponderadores asignados al grupo total de las 40 DMU´s, se evidencia de igual manera la variable de entrada “costos de personal”, como la que más castiga con ponderadores ceros, encontrando que asignó este a 18 unidades de observación; “costos de operación” asigna a 16 DMU´s, esta clase de ponderadores, siendo entre las dos la que mayor peso ponderado representa con 0,00058; mientras que “costos de personal” tiene un peso totalizado de 3,048E-05.

Finalmente se analizan las correlaciones presentadas entre las variables tomadas en cuenta (tabla 19), genera una significativa, dada entre las variables “costo de operación” y “costos de personal” y un valor de 0,9822, debido a que la primera, hace parte de la segunda, pero que para mirar el comportamiento de “costos de personal” en particular, ha sido incluida como variable aparte.

Tabla 19. Correlaciones BCC

<table>
<thead>
<tr>
<th></th>
<th>Costos de operación</th>
<th>Costo de Personal</th>
<th>Eficiencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Costos de operación</td>
<td>1</td>
<td>0,98229777</td>
<td>0,35170819</td>
</tr>
<tr>
<td>Costo de Personal</td>
<td>0,982297774</td>
<td>1</td>
<td>0,38980231</td>
</tr>
<tr>
<td>Eficiencia</td>
<td>0,351708187</td>
<td>0,38980231</td>
<td>1</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

5.4. POLÍTICAS DE MEJORAMIENTO

Con el fin de ir más allá de establecer el análisis de los niveles de eficiencia presentados por los departamentos de la empresa Transportes Oro S.A.S en el
período enero a octubre de 2013, se decide plantear políticas de mejora con el fin de contribuir al desarrollo y crecimiento de los departamentos, y por ende, de la compañía.

De esta manera, se realizarán políticas de mejoramiento teniendo en cuenta el modelo CCR-O, establecido para cada uno de los departamentos, según las salidas específicas generadas según los procedimientos que se realicen en ellos, y posteriormente, basados en el modelo BCC-O, políticas de mejoramiento para aumentar el nivel de eficiencia de los departamentos, basados en las variables unificadas, con las que se hicieron los análisis entre departamentos. En ambos serán tomadas las proyecciones realizadas para el último mes del período evaluado, octubre.

Iniciando con las políticas de mejora establecidas por el modelo CCR-O para cada uno de los departamentos (anexo 3), se establecen las siguientes:

Departamento Recursos Humanos: Presenta un nivel de eficiencia del 14,80%, para que éste sea llevado a la frontera de eficiencia, es necesario que se genere un aumento considerable en el número de capacitaciones, ya que el nivel presentado en la actualidad es muy bajo, las capacitaciones representan beneficio tanto para el empleado como para el desarrollo y cumplimiento misional de la empresa. De igual manera, que el número de reclutamientos realizados deben satisfacer los requeridos por la empresa, en el momento preciso.

Departamento Financiero: Se muestra como eficiente en el mes en el que es realizada la proyección, sin embargo es necesario que el valor de recaudo de cartera sea incrementado. Y tomar medidas necesarias para que el nivel de eficiencia presentado, sea una constante.
Departamento Comercial: con un nivel de eficiencia en el último mes evaluado de 58,75%, para figurar como eficiente, el modelo muestra un alto incremento en ventas, pero esto se debe a que los costos de ese período fue muy representativo comparado con los de otros meses; por lo que se plantea realizar una revisión de cómo están siendo los costos de los procesos realizados, respecto a las ventas que genera el departamento. De igual manera, se hace necesario realizar un pronóstico de ventas para el año 2014 basados en históricos, y establecer metas. La variable “clientes nuevos” también se ve afectada, por lo que se requiere, que el departamento comercial intensifique la búsqueda de nuevos clientes para la compañía, y lograr mínimo tres de estos.

Departamento de Operaciones: Con un nivel de eficiencia técnica de 82,11% en el último mes evaluado, y para que éste sea llevado a un 100%, se requiere que los clientes atendidos sean aumentados, para esta observación se generan dos conceptos, el primero que Departamento de operaciones debe atender todos los servicios solicitados, y el segundo, el Departamento Comercial debe conseguir más clientes, así, el número de clientes atendidos por operaciones será mayor. Cumpliendo con esto, teniendo más clientes por atender y satisfacer, el número de kilómetros recorridos aumentará.
6. CONCLUSIONES

En los diversos análisis realizados, el Departamento Financiero aparece con los niveles de eficiencia más altos, caso contrario, fue analizado para el Departamento de Recurso Humano, apareció en diversas etapas del diagnóstico con los niveles de eficiencias más bajos registrados en el estudio, siendo necesario, para éste Departamento un mejor desarrollo de procesos y actividades que le son tomadas como resultados de ellos.

Los promedios de niveles de eficiencia más críticos, en el análisis entre departamentos, lo presentaron los meses de enero, julio y octubre, con niveles de eficiencia 61,94%, 63,54% y 63,91%, respectivamente. El promedio del mes de enero fue sesgado por el nivel de eficiencia del departamento comercial, que fue de 25,47%; de otro lado, los promedios de los meses julio y octubre fueron sesgados por el departamento de recursos humanos, presentando niveles de eficiencia de 12,87% y 14,80% respectivamente. El mejor promedio de niveles de eficiencia, fue el presentado por el mes de septiembre con 93,72%, seguido por febrero con 93,12%.

Se establecieron políticas de mejora pertinentes para cada uno de los Departamentos de la empresa, las cuales es de vital importancia que sean ejecutadas e interiorizadas, no sólo por los directores de proceso, sino por todos los integrantes que hagan parte de los departamentos, logrando de esta manera, aumentar los niveles de eficiencia que se verá reflejado en una mejor prestación del servicio, posicionamiento y rentabilidad.
Los tres modelos de la Herramienta *Data Envelopment Analysis* (CCR-O, *Windows Analysis* y BCC-O) brindaron las bases necesarias, para cumplir con los objetivos planteados por los investigadores.
7. BIBLIOGRAFÍA

CHIAVENATO, Idalberto. Introducción a la Teoría General de la Administración. Séptima Edición, de, McGraw-Hill Interamericana, {En línea}. Publicado 2004,

Anexo 1. Base de datos.

DEPARTAMENTO DE RECURSOS HUMANOS

<table>
<thead>
<tr>
<th>DMU</th>
<th>(i)Costos</th>
<th>(o)capacitaciones</th>
<th>(o)reclutamiento</th>
<th>(o)Actividades de Bienestar Social</th>
</tr>
</thead>
<tbody>
<tr>
<td>ene-13</td>
<td>9266184</td>
<td>6</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>feb-13</td>
<td>4967223</td>
<td>28</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>mar-13</td>
<td>8954654</td>
<td>17</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>abr-13</td>
<td>14750588</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>may-13</td>
<td>9945914</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>jun-13</td>
<td>7073755</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>jul-13</td>
<td>13782247</td>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ago-13</td>
<td>7662682</td>
<td>10</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>sep-13</td>
<td>15213401</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>oct-13</td>
<td>12583023</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

DEPARTAMENTO DE OPERACIONES

<table>
<thead>
<tr>
<th>DMU</th>
<th>(i)Costo</th>
<th>(O)Kilómetros recorrido</th>
<th>(O)Clientes atendidos</th>
</tr>
</thead>
<tbody>
<tr>
<td>ene-13</td>
<td>1443909750</td>
<td>244473</td>
<td>762</td>
</tr>
<tr>
<td>feb-13</td>
<td>1339560955</td>
<td>275428</td>
<td>881</td>
</tr>
<tr>
<td>mar-13</td>
<td>1412819393</td>
<td>283208</td>
<td>860</td>
</tr>
<tr>
<td>abr-13</td>
<td>1579854000</td>
<td>273284</td>
<td>862</td>
</tr>
<tr>
<td>may-13</td>
<td>1350742727</td>
<td>300567</td>
<td>926</td>
</tr>
<tr>
<td>jun-13</td>
<td>1573642119</td>
<td>279648</td>
<td>891</td>
</tr>
<tr>
<td>jul-13</td>
<td>1694060164</td>
<td>290254</td>
<td>972</td>
</tr>
<tr>
<td>ago-13</td>
<td>1491826987</td>
<td>261008</td>
<td>849</td>
</tr>
<tr>
<td>sep-13</td>
<td>1932361006</td>
<td>306960</td>
<td>992</td>
</tr>
<tr>
<td>oct-13</td>
<td>1742843484</td>
<td>296995</td>
<td>981</td>
</tr>
</tbody>
</table>
Anexo 1. (Continuación)

<table>
<thead>
<tr>
<th></th>
<th>DEPARTAMENTO FINANCIERO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMU</td>
<td>(I)Costos</td>
</tr>
<tr>
<td>ene-13</td>
<td>14543514</td>
<td></td>
</tr>
<tr>
<td>feb-13</td>
<td>13795699</td>
<td></td>
</tr>
<tr>
<td>mar-13</td>
<td>13837612</td>
<td></td>
</tr>
<tr>
<td>abr-13</td>
<td>13847299</td>
<td></td>
</tr>
<tr>
<td>may-13</td>
<td>13802271</td>
<td></td>
</tr>
<tr>
<td>jun-13</td>
<td>13954180</td>
<td></td>
</tr>
<tr>
<td>jul-13</td>
<td>13907523</td>
<td></td>
</tr>
<tr>
<td>ago-13</td>
<td>13909023</td>
<td></td>
</tr>
<tr>
<td>sep-13</td>
<td>13907023</td>
<td></td>
</tr>
<tr>
<td>oct-13</td>
<td>14934175</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

<table>
<thead>
<tr>
<th></th>
<th>DEPARTAMENTO COMERCIAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMU</td>
<td>(I)Costos</td>
</tr>
<tr>
<td>ene-13</td>
<td>18145582</td>
<td></td>
</tr>
<tr>
<td>feb-13</td>
<td>9726137</td>
<td></td>
</tr>
<tr>
<td>mar-13</td>
<td>9335001</td>
<td></td>
</tr>
<tr>
<td>abr-13</td>
<td>9207057</td>
<td></td>
</tr>
<tr>
<td>may-13</td>
<td>7710615</td>
<td></td>
</tr>
<tr>
<td>jun-13</td>
<td>6924072</td>
<td></td>
</tr>
<tr>
<td>jul-13</td>
<td>8873151</td>
<td></td>
</tr>
<tr>
<td>ago-13</td>
<td>6736074</td>
<td></td>
</tr>
<tr>
<td>sep-13</td>
<td>5724434</td>
<td></td>
</tr>
<tr>
<td>oct-13</td>
<td>8623639</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.

Anexo 2. Niveles de eficiencia por cada departamento CCR-O

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D. Operaciones</td>
<td>0.7698</td>
<td>0.9593</td>
<td>0.9008</td>
<td>0.7959</td>
<td>1</td>
<td>0.8259</td>
<td>0.8369</td>
<td>0.8301</td>
<td>0.7488</td>
<td>0.8211</td>
<td>0.8489</td>
</tr>
<tr>
<td>D. Recursos</td>
<td>0.8041</td>
<td>0.3368</td>
<td>0.1082</td>
<td>0.3121</td>
<td>0.4389</td>
<td>0.1287</td>
<td>0.8103</td>
<td>1</td>
<td>0.1480</td>
<td>0.5087</td>
<td></td>
</tr>
<tr>
<td>D. Humanos</td>
<td>0.2547</td>
<td>0.5006</td>
<td>0.5025</td>
<td>0.4862</td>
<td>0.6741</td>
<td>0.6286</td>
<td>0.5758</td>
<td>1</td>
<td>1</td>
<td>0.5875</td>
<td>0.6210</td>
</tr>
<tr>
<td>D. Comercial</td>
<td>0.6275</td>
<td>0.6636</td>
<td>0.8138</td>
<td>0.7979</td>
<td>0.7318</td>
<td>0.6559</td>
<td>0.8629</td>
<td>0.8114</td>
<td>0.6939</td>
<td>1</td>
<td>0.7659</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia.
Anexo 3. Proyecciones por departamentos.

DEPARTAMENTO DE RECURSOS HUMANOS.

<table>
<thead>
<tr>
<th>DMU I/O</th>
<th>Score Data</th>
<th>Projection</th>
<th>Difference</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/2013</td>
<td>0,148033475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos</td>
<td>12583023</td>
<td>12583023</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>capacitaciones</td>
<td>2</td>
<td>70,92990268</td>
<td>68,9299027</td>
<td>999,90%</td>
</tr>
<tr>
<td>reclutamiento</td>
<td>3</td>
<td>20,26568648</td>
<td>17,2656865</td>
<td>575,52%</td>
</tr>
<tr>
<td>Actividades de Bienestar Social</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

DEPARTAMENTO FINANCIERO

<table>
<thead>
<tr>
<th>DMU I/O</th>
<th>Score Data</th>
<th>Projection</th>
<th>Difference</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/2013</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos</td>
<td>14934175</td>
<td>14934175</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>Recaudo</td>
<td>3025719836</td>
<td>3025719836</td>
<td>0</td>
<td>0,00%</td>
</tr>
</tbody>
</table>

DEPARTAMENTO COMERCIAL

<table>
<thead>
<tr>
<th>DMU I/O</th>
<th>Score Data</th>
<th>Projection</th>
<th>Difference</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/2013</td>
<td>0,587467766</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costos</td>
<td>$ 8.623.639,00</td>
<td>$ 8.623.639,00</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>Ventas</td>
<td>$ 2.362.199.366,78</td>
<td>$ 4.020.985.493,65</td>
<td>1658786127</td>
<td>70,22%</td>
</tr>
<tr>
<td>Clientes Nuevos</td>
<td>0</td>
<td>3,01292285</td>
<td>3,01292285</td>
<td>999,90%</td>
</tr>
</tbody>
</table>

DEPARTAMENTO DE OPERACIONES

<table>
<thead>
<tr>
<th>DMU I/O</th>
<th>Score Data</th>
<th>Projection</th>
<th>Difference</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/2013</td>
<td>0,82105504</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costo</td>
<td>1742843484</td>
<td>1742843484</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>Kilometros recorrido</td>
<td>296995</td>
<td>387817,1818</td>
<td>90822,1818</td>
<td>30,58%</td>
</tr>
<tr>
<td>Clientes atendidos</td>
<td>981</td>
<td>1194,804188</td>
<td>213,804188</td>
<td>21,79%</td>
</tr>
</tbody>
</table>
Anexo 3. Proyección entre departamentos

<table>
<thead>
<tr>
<th>ENTRE DEPARTAMENTOS</th>
<th>DMU I/O</th>
<th>Score Data</th>
<th>Projection</th>
<th>Difference</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>oct-13 D. RH</td>
<td>0,148033475</td>
<td>11376490</td>
<td>3760690</td>
<td>-7615800</td>
<td>-66,94%</td>
</tr>
<tr>
<td>Costos de operación</td>
<td>1206533</td>
<td>0,148033475</td>
<td>1</td>
<td>0,85196652</td>
<td>575,52%</td>
</tr>
<tr>
<td>Costo de Personal</td>
<td>1206533</td>
<td>0,148033475</td>
<td>1</td>
<td>0,85196652</td>
<td>575,52%</td>
</tr>
<tr>
<td>Eficiencia</td>
<td>0,148033475</td>
<td>1</td>
<td>0,85196652</td>
<td>575,52%</td>
<td></td>
</tr>
</tbody>
</table>

oct-13 OPERACIONES	0,82105504	1521130870	3760690	-1517370180	-99,75%
Costos de operación	221712614	0,82105504	1	0,17894496	21,79%
Costo de Personal	1206533	0,82105504	1	0,17894496	21,79%
Eficiencia	0,82105504	0,82105504	0	0,00%	

oct-13 D. COMERCIAL	0,587467766	2013207	2013207	0	0,00%
Costos de operación	6610432	0,587467766	1	0,41253223	70,22%
Costo de Personal	13895523	0,587467766	1	0,41253223	70,22%
Eficiencia	1	0,587467766	1	0,41253223	70,22%

oct-13 D. FINANCIERA	1	1038652	1038652	0	0,00%
Costos de operación	13895523	1	13895523	0	0,00%
Costo de Personal	13895523	1	13895523	0	0,00%
Eficiencia	1	1	1	0	0,00%

Fuente: Elaboración propia.